[3] F.S.H. Krismastuti, M.R. Dewi, B. Prieto-Simon, T. Nann, N.H. Voelcker, Disperse-and-Collect Approach for the Type-Selective Detection of               Matrix Metalloproteinases in Porous Silicon Resonant Microcavities, ACS Sens. (2016). doi:10.1021/acssensors.6b00442.

[4] S. Chandrasekaran, S. Vijayakumar, T. Nann, N.H. Voelcker, Investigation of porous silicon photocathodes for photoelectrochemical hydrogen           production, Int. J. Hydrog. Energy. 41 (2016) 19915–19920. doi:10.1016/j.ijhydene.2016.09.048.

[5] H. Yang, S.J. Bradley, A. Chan, G.I.N. Waterhouse, T. Nann, P.E. Kruger, S.G. Telfer, Hydrogenation of Nitrobenzenes on Cobalt–Platinum              Bimetallic Nanoparticles, Synfacts. 12 (2016) 1311–1311. doi:10.1055/s-0036-1589443.

[6] R. Garg, S. Elmas, T. Nann, M.R. Andersson, Deposition Methods of Graphene as Electrode Material for Organic Solar Cells, Adv. Energy Mater.      (2016) n/a–n/a. doi:10.1002/aenm.201601393.

[7] K.L. Schroeder, R.V. Goreham, T. Nann, Graphene Quantum Dots for Theranostics and Bioimaging, Pharm. Res. 33 (2016) 2337–2357.                    doi:10.1007/s11095-016-1937-x.

[8] H. Yang, S.J. Bradley, A. Chan, G.I.N. Waterhouse, T. Nann, P.E. Kruger, S.G. Telfer, Catalytically Active Bimetallic Nanoparticles Supported on      Porous Carbon Capsules Derived From Metal–Organic Framework Composites, J. Am. Chem. Soc. 138 (2016) 11872–11881.                                   doi:10.1021/jacs.6b06736.

[9] S. Chandrasekaran, T. Nann, N.H. Voelcker, Silicon Nanowire Photocathodes for Photoelectrochemical Hydrogen Production, Nanomaterials. 6         (2016) 144. doi:10.3390/nano6080144.

[10] M. Röding, S.J. Bradley, N.H. Williamson, M.R. Dewi, T. Nann, M. Nydén, The Power of Heterogeneity: Parameter Relationships from                        Distributions, PLOS ONE. 11 (2016) e0155718. doi:10.1371/journal.pone.0155718.

[11] S. Elmas, F. Ambroz, D. Chugh, T. Nann, Microfluidic Chip for the Photocatalytic Production of Active Chlorine, Langmuir. 32 (2016) 4952–                4958. doi:10.1021/acs.langmuir.6b00748.

[12] T.J. Macdonald, D.D. Tune, M.R. Dewi, J.C. Bear, P.D. McNaughter, A.G. Mayes, W.M. Skinner, I.P. Parkin, J.G. Shapter, T. Nann, SWCNT               photocathodes sensitised with InP/ZnS core–shell nanocrystals, J. Mater. Chem. C. 4 (2016) 3379–3384. doi:10.1039/C5TC03833B.


[13] T.J. Macdonald, D.D. Tune, M.R. Dewi, C.T. Gibson, J.G. Shapter, T. Nann, Cover Picture: A TiO2 Nanofiber–Carbon Nanotube-Composite              Photoanode for Improved Efficiency in Dye-Sensitized Solar Cells (ChemSusChem 20/2015), ChemSusChem. 8 (2015) 3349–3349.                          doi:10.1002/cssc.201501206.

[14] M.R. Dewi, G. Laufersky, T. Nann, Selective assembly of Au-Fe3O4 nanoparticle hetero-dimers, Microchim. Acta. 182 (2015) 2293–2298.                  doi:10.1007/s00604-015-1571-z.

[15] S. Simovic, Y. Song, T. Nann, T.A. Desai, Intestinal absorption of fluorescently labeled nanoparticles, Nanomedicine Nanotechnol. Biol. Med. 11        (2015) 1169–1178. doi:10.1016/j.nano.2015.02.016.

[16] J.C. Bear, N. Hollingsworth, A. Roffey, P.D. McNaughter, A.G. Mayes, T.J. Macdonald, T. Nann, W.H. Ng, A.J. Kenyon, G. Hogarth, I.P. Parkin,        Doping Group IIB Metal Ions into Quantum Dot Shells via the One-Pot Decomposition of Metal-Dithiocarbamates, Adv. Opt. Mater. 3 (2015)              704–712. doi:10.1002/adom.201400570.

[17] A. Wickberg, J.B. Mueller, Y.J. Mange, J. Fischer, T. Nann, M. Wegener, Three-dimensional micro-printing of temperature sensors based on up-        conversion luminescence, Appl. Phys. Lett. 106 (2015) 133103. doi:10.1063/1.4916222.

[18] M.R. Dewi, T.A. Gschneidtner, S. Elmas, M. Ranford, K. Moth-Poulsen, T. Nann, Monofunctionalization and Dimerization of Nanoparticles Using        Coordination Chemistry, ACS Nano. 9 (2015) 1434–1439. doi:10.1021/nn5058408.

[19] S. Chandrasekaran, S.J. P. McInnes, T. J. Macdonald, T. Nann, N. H. Voelcker, Porous silicon nanoparticles as a nanophotocathode for                     photoelectrochemical water splitting, RSC Adv. 5 (2015) 85978–85982. doi:10.1039/C5RA12559F.

[20] Y. J. Mange, M. R. Dewi, T. J. Macdonald, W. M. Skinner, T. Nann, Rapid microwave assisted synthesis of nearly monodisperse aqueous                  CuInS 2 /ZnS nanocrystals, CrystEngComm. 17 (2015) 7820–7823. doi:10.1039/C5CE01325A.

[21] R. Kroon, A. Melianas, W. Zhuang, J. Bergqvist, A.D. de Z. Mendaza, T. T. Steckler, L. Yu, S. J. Bradley, C. Musumeci, D. Gedefaw, T. Nann,            A. Amassian, C. Müller, O. Inganäs, M. R. Andersson, Comparison of selenophene and thienothiophene incorporation into pentacyclic lactam-          based conjugated polymers for organic solar cells, Polym. Chem. 6 (2015) 7402–7409. doi:10.1039/C5PY01245G.

[22] J. B. Lindén, M. Larsson, S. Kaur, W. M. Skinner, S. J. Miklavcic, T. Nann, I. M. Kempson, M. Nydén, Polyethyleneimine for copper absorption          II: kinetics, selectivity and efficiency from seawater, RSC Adv. 5 (2015) 51883–51890. doi:10.1039/C5RA08029K.

[23] T. J. Macdonald, Y. J. Mange, M. R. Dewi, H. U. Islam, I. P. Parkin, W. M. Skinner, T. Nann, CuInS 2 /ZnS nanocrystals as sensitisers for NiO            photocathodes, J. Mater. Chem. A. 3 (2015) 13324–13331. doi:10.1039/C5TA01821H.


[24] S. Chandrasekaran, T.J. Macdonald, A.R. Gerson, T. Nann, N.H. Voelcker, Boron-Doped Silicon Diatom Frustules as a Photocathode for                  Water Splitting, ACS Appl. Mater. Interfaces. 7 (2015) 17381–17387. doi:10.1021/acsami.5b04640.

[25] M. Röding, S.J. Bradley, M. Nydén, T. Nann, Fluorescence Lifetime Analysis of Graphene Quantum Dots, J. Phys. Chem. C. 118 (2014)                  30282–30290. doi:10.1021/jp510436r.

[26] D.P. Tran, T.J. MacdonaldB. WolfrumR. StockmannT. Nann, A. Offenhäusser, B. Thierry, Photoresponsive properties of ultrathin silicon              nanowires, Appl. Phys. Lett. 105 (2014) 231116. doi:10.1063/1.4904089.

[27] S. Massadeh, T. Nann, InP/ZnS Nanocrystals as Fluorescent Probes for the Detection of ATP, Nanomater. Nanotechnol. 4 (2014) 15.                      doi:10.5772/58523.

[28] M.R. Dewi, W.M. Skinner, T. Nann, Synthesis and Phase Transfer of Monodisperse Iron Oxide (Fe3O4) Nanocubes, Aust. J. Chem. 67 (2014)          663–669. doi:10.1071/CH13595.

[29] T.J. Macdonald, J. Xu, S. Elmas, Y.J. Mange, W.M. Skinner, H. Xu, T. Nann, NiO Nanofibers as a Candidate for a Nanophotocathode,                      Nanomaterials. 4 (2014) 256–266. doi:10.3390/nano4020256.

[30] M. Bacon, S.J. Bradley, T. Nann, Graphene Quantum Dots, Part. Part. Syst. Charact. 31 (2014) 415–428. doi:10.1002/ppsc.201300252.

[31] J.C. Bear, N. Hollingsworth, P.D. McNaughter, A.G. Mayes, M.B. Ward, T. Nann, G. Hogarth, I.P. Parkin, Copper-Doped CdSe/ZnS Quantum          Dots: Controllable Photoactivated Copper(I) Cation Storage and Release Vectors for Catalysis, Angew. Chem. Int. Ed. 53 (2014) 1598–1601.          doi:10.1002/anie.201308778.

[32] S. Chandrasekaran, T. Macdonald, Y. Mange, N. Voelcker, T. Nann, Water splitting on a quantum dot sensitized porous silicon photocathode,          in: PSST 2014 Home Page, 2014. 

[33] J. B. Lindén, M. Larsson, B. R. Coad, W. M. Skinner, M. Nydén, Polyethyleneimine for copper absorption: kinetics, selectivity and efficiency in          artificial seawater, RSC Adv. 4 (2014) 25063–25066. doi:10.1039/C4RA02223H.

[34] M. R. Dewi, G. Laufersky, T. Nann, A highly efficient ligand exchange reaction on gold nanoparticles: preserving their size, shape and colloidal        stability, RSC Adv. 4 (2014) 34217–34220. doi:10.1039/C4RA05035E.

[35] T. J. Macdonald, Y. J. Mange, M. Dewi, A. McFadden, W. M. Skinner, T. Nann, Cation exchange of aqueous CuInS 2 quantum dots,                        CrystEngComm. 16 (2014) 9455–9460. doi:10.1039/C4CE00545G.

[36] S. Chandrasekaran, T. J. Macdonald, Y. J. Mange, N. H. Voelcker, T. Nann, A quantum dot sensitized catalytic porous silicon photocathode, J           . Mater. Chem. A. 2 (2014) 9478–9481. doi:10.1039/C4TA01677G.

[37] N. Viet Long, Y. Yang, M. Yuasa, C. Minh Thi, Y. Cao, T. Nann, M. Nogami, Controlled synthesis and characterization of iron oxide                            nanostructures with potential applications for gas sensors and the environment, RSC Adv. 4 (2014) 6383–6390. doi:10.1039/C3RA45925J.

[38] N. Viet Long, Y. Yang, M. Yuasa, C. Minh Thi, Y. Cao, T. Nann, M. Nogami, Gas-sensing properties of p-type α-Fe 2 O 3 polyhedral particles          synthesized via a modified polyol method, RSC Adv. 4 (2014) 8250–8255. doi:10.1039/C3RA46410E.

Thomas Nann Research group

University of Newcastle, Australia
Victoria University of Wellington, New Zealand